giovedì 10 ottobre 2013

GIOCO ON LINE:CONVERSIONI DELLE UNITA' DI MISURA : AREA E VOLUME

CONVERSIONI DELLE UNITA' DI MISURA : 
AREA E VOLUME


Sposta con il mouse i corpi con il valore del volume equivalente e permetti all'omino di avanzare.
 

ESEMPIO DI GRANDEZZE INVERSAMENTE PROPORZIONALI (APPLET)





Hai due recipienti con superficie di base diversa. Devi calcolare l'altezza che il fluido raggiunge quando lo travasi nell'altro recipiente. 
Si tratta di RELAZIONE DI PROPORZIONALITA' INVERSA tra l'altezza h del fluido e la superficie di base S:

Sh=costante

il prodotto delle due grandezze è costante (è la quantità di fluido)

CHI VUOL ESSERE MILIONARIO: GIOCO CON LE UNITA' DI MISURA

CHI VUOL ESSERE MILIONARIO


Funziona come il classico quiz televisivo solo che le domande sono tutte sulle unità di misura.
Buon divertimento!
CLICCA QUI

GIOCHI CON LE EQUIVALENZE DELLE UNITA' DI MISURA DELLA LUNGHEZZA

http://www.umapalata.com/design/games/AZartFS_misure.asp?file=AZartFS_misure.swf
CLICCA QUI
Il gioco consiste nel appendere al gancio il valore equivalente per permettere all'omino di avanzare.



Il gioco consiste nel associare a due a due le misure di lunghezze equivalenti. Quando termini passi ad un livello successivo. Vediamo quanti punti riesci a fare.

giovedì 26 settembre 2013

GIOCO CON CONVERSIONI DELLE UNITA' DI MISURA


Il gioco consiste nel scrivere la conversione delle unità di misura proposte e premere invio. Se la risposta è corretta un omino salirà nella giostra panoramica. CLICCA QUI

mercoledì 25 settembre 2013

SIMULATORI DEL CAMPO ELETTRICO


Mostra le linee di campo generate da due cariche aventi il segno opposto o con lo stesso segno. Si può variare il rapporto tra le due cariche. CLICCA QUI

ALTRO SIMULATORE DI CAMPO ELETTRICO CLICCA QUI

martedì 17 settembre 2013

LEZIONE: LE GRANDEZZE FISICHE E LA MISURA


LA MISURA E LE GRANDEZZE FISICHE: misure dirette e indirette, unità di misura , campioni, Sistema Internazionale , analisi dimensionale

giovedì 5 settembre 2013

STUDIO DEGLI URTI

STUDIO DEGLI URTI




Con questo programma puoi studiare gli urti tra 2 corpi

ALLENAMENTO CON LE PERCENTUALI

ALLENAMENTO CON LE PERCENTUALI


COME SI GIOCA: è come il memory solo che bisogna associare alla frazione l'equivalente percentuale. Ad esempio a 1/10 il 10%

ESERCITAZIONE DI MISURA


Sai eseguire della misure di lunghezze con la stecca da disegno . Prova ad esercitarti con questo gioco.
Sciegliere se eseguire misure intere, decimali o frazionarie. Scrivere la lettura eseguita nella casella di testo e cliccare su CHECK

mercoledì 31 luglio 2013

DECOUVERTE : IL DISCO DI BENHAM


IL DISCO DI BENHAM
    Una conseguenza della persistenza delle immagini è di causare la comparsa di colori su un disco in bianco e nero (con opportuna distribuzione del bianco e del nero) che ruota molto velocemente.

LA CURVA BACHISTOCRONA: LA CICLOIDE


LA CICLOIDE
 

video girato AL MUSEO DE'COUVERTE DI PARIGI

Un problema di cui la cicloide fornisce la soluzione è la DETERMINAZIONE DELLA BRACHISTOCRONA , ovvero la curva di discesa più rapida. A porsi per primo la domanda fù Johann Bernulli nel 1697;il suo quesito recitava più o meno così: “Dati due punti Ae B su un piano verticale in un campo gravitazionale uniforme, trovae la curva tra essi sulla quale un punto materiale, vincolato a scorervi senza attrito vada da quello più alto a quello più in basso nel minor tempo possibile”.

Istintivamente si potrebbe pensare che la distanza più breve tra due punti è il segmento di retta, ma non è così perché conviene puntando il più possibile verso il basso per acquistarela massima velocitàiniziale. Galileo aveva già affrontato molti anni prima ed aveva creduto di risolverlo indicando come traettoria ottimale l’arco di cerchi. In realtà, la traettoria ottimale è la cicloide che per questo è detta anche curva brachistocrona, cioè del tempo più breve.
La soluzione matematica di questo problema costituì uno dei primi successi del calcolo differenziale che verso la fine del 1600 era stato inventato indipendentementeda Newton e Leibniz.


Nel video si può notare che le palline poste sul profilo di cicloide arrivano alla base nello stesso momento anche se partono da altezze diverse. Questa è un'altra proprietà della curva.

giovedì 27 giugno 2013

Esperimento 1 e 2 sul principi di Archimede

esperimento n°8 in sistema accelerato

palloncino

archimede con bilanciA due piatti

spinta di Archimede con una siringa

QUESITO IDROSTATICO



Riempi un bicchiere di acqua e mettilo sulla bilancia. Ora inserisci un dito dentro l'acqua senza toccare il fondo del bicchiere o le sue pareti. Secondo te il peso aumenta, diminuisce o rimane uguale?
Per scoprirlo guarda il video realizzato dagli alunni del "Liceo Leopardi Majorana" di Pordenone.

VERIFICHIAMO CHE LA SPINTA DI ARCHIMEDE E' UGUALE AL PESO DEL FLUIDO SPO...

RELAZIONE TRA LA SPINTA DI ARCHIMEDE E LA DENSITA' DEL FLUIDO

MISURA DELLA DENSITA' DI UN CORPO USANDO LA SPINTA DI ARCHIMEDE

QUESITO "LA BARCA E IL MATTONE"

ESPERIMENTO : DIAVOLETTO DI CARTESIO (FLUIDI)





TITOLO: Il diavoletto di Cartesio

MATERIALI:
-          Recipiente di plastica trasparente (Altezza 30 cm circa, diametro 6 cm circa)
-          Membrana in plastica (materiale simile a quello dei palloncini)
-          Oggetto in vetro con la faccia inferiore convessa (in modo tale da avere uno spazio
interno vuoto a contatto con l’esterno nella parte inferiore); in questa esecuzione è stato utilizzato un oggetto a forma di diavoletto.

PROCEDIMENTO:
Si riempie il recipiente in plastica con acqua (fino ad arrivare quasi all’orlo) e vi si immerge il diavoletto (deve essere pesante a sufficienza in modo tale che affondi completamente fino ad una profondità intermedia tra il fondo e l’orlo.
Si chiude l’estremità del recipiente stirando la membrana in plastica in maniera che sia ben tesa e fissata.


OSSERVAZIONI:
-     Esercitando una pressione sulla membrana di plastica, ad esempio premendo con il dito sulla stessa, l’oggetto in vetro, situato inizialmente ad un’altezza intermedia, tende a scendere verso il basso del recipiente (sebbene non vi sia stato alcun contatto diretto tra il dito e l’oggetto stesso)

SPIEGAZIONE:
In condizioni normali, all’interno dell’oggetto in vetro, nella sua parte concava, si viene a creare una bolla d’aria, ovvero una sacca che possiede densità inferiore rispetto all’acqua e impedisce al diavoletto di affondare completamente. Quando una pressione dall’alto viene esercitata sul liquido, esso – per il principio di Pascal – essa si trasmette su ogni parte di esso e lo comprime. Viene compressa, quindi, anche la bolla d’aria (l’aria, in quanto gas, può essere facilmente compressa) che diminuisce di volume; lo spazio lasciato libero da essa viene occupato dal liquido. La densità del diavoletto, allora, aumenta ed esso tende ad affondare.

Il seguente video mostra l'esperimento realizzato dagli alunni del liceo "Leopardi Majorana " di Pordenone nell'anno scolastico 2013-2014